1,042 research outputs found

    A galaxy as the source of a Civ absorption system close to the epoch of reionization

    Full text link
    We find a bright (L_{UV}=2.5 L*_{z=6}) Lyman alpha emitter at redshift z=5.719 at a projected distance of 79 physical kpc from a strong triply ionized carbon (Civ) absorption system at redshift z=5.7238 previously reported in the spectrum of the z_{em} = 6.309 QSO SDSS J1030+0524. This is the highest redshift galaxy-absorber pair detected to-date, supporting the idea that galaxy-wide outflows were already in place at the end of the epoch of reionization. The proximity of this object makes it the most likely source of metals, consistent with models of outflows at lower redshift where significant observational evidence relates metal absorption systems with galaxies hosting outflows. In a typical outflow scenario, a wind of 200 km/s, active since the universe was only 0.6 Gyr old (z ~8.4), could eject metals out to 79 kpc at z=5.719. Although the origin of metals in the intergalactic medium (IGM) is still under debate, our results are consistent with predictions from cosmological simulations which reproduce the evolution of the cosmic density of Civ, from z ~ 6 to the present day based on outflow-driven enrichment of the IGM. We also report two more Lyman alpha emitters in this field, at z=5.973\pm 0.002 and z=5.676\pm 0.002 respectively, the former confirming the original identification by Stiavelli et al. Our results suggest that the colour cut typically used to identify i-dropouts (i_{775}-z_{850}>1.3) misses a non-negligible fraction of blue galaxies with faint UV continuum at z \geq 5.7.Comment: Accepted for publication in MNRAS, 9 pages, 3 figures, 1 tabl

    Economic impact of Tegaderm chlorhexidine gluconate (CHG) dressing in critically ill patients.

    Get PDF
    PURPOSE: To estimate the economic impact of a Tegaderm(TM) chlorhexidine gluconate (CHG) gel dressing compared with a standard intravenous (i.v.) dressing (defined as non-antimicrobial transparent film dressing), used for insertion site care of short-term central venous and arterial catheters (intravascular catheters) in adult critical care patients using a cost-consequence model populated with data from published sources. MATERIAL AND METHODS: A decision analytical cost-consequence model was developed which assigned each patient with an indwelling intravascular catheter and a standard dressing, a baseline risk of associated dermatitis, local infection at the catheter insertion site and catheter-related bloodstream infections (CRBSI), estimated from published secondary sources. The risks of these events for patients with a Tegaderm CHG were estimated by applying the effectiveness parameters from the clinical review to the baseline risks. Costs were accrued through costs of intervention (i.e. Tegaderm CHG or standard intravenous dressing) and hospital treatment costs depended on whether the patients had local dermatitis, local infection or CRBSI. Total costs were estimated as mean values of 10,000 probabilistic sensitivity analysis (PSA) runs. RESULTS: Tegaderm CHG resulted in an average cost-saving of ÂŁ77 per patient in an intensive care unit. Tegaderm CHG also has a 98.5% probability of being cost-saving compared to standard i.v. dressings. CONCLUSIONS: The analyses suggest that Tegaderm CHG is a cost-saving strategy to reduce CRBSI and the results were robust to sensitivity analyses

    A Bright Submillimeter Source in the Bullet Cluster (1E0657--56) Field Detected with BLAST

    Get PDF
    We present the 250, 350, and 500 micron detection of bright submillimeter emission in the direction of the Bullet Cluster measured by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). The 500 micron centroid is coincident with an AzTEC 1.1 mm point-source detection at a position close to the peak lensing magnification produced by the cluster. However, the 250 micron and 350 micron centroids are elongated and shifted toward the south with a differential shift between bands that cannot be explained by pointing uncertainties. We therefore conclude that the BLAST detection is likely contaminated by emission from foreground galaxies associated with the Bullet Cluster. The submillimeter redshift estimate based on 250-1100 micron photometry at the position of the AzTEC source is z_phot = 2.9 (+0.6 -0.3), consistent with the infrared color redshift estimation of the most likely IRAC counterpart. These flux densities indicate an apparent far-infrared luminosity of L_FIR = 2E13 Lsun. When the amplification due to the gravitational lensing of the cluster is removed, the intrinsic far-infrared luminosity of the source is found to be L_FIR <= 10^12 Lsun, consistent with typical luminous infrared galaxies.Comment: Accepted for publication in the Astrophysical Journal. Maps are available at http://blastexperiment.info

    Over half of the far-infrared background light comes from galaxies at z >= 1.2

    Full text link
    Submillimetre surveys during the past decade have discovered a population of luminous, high-redshift, dusty starburst galaxies. In the redshift range 1 <= z <= 4, these massive submillimetre galaxies go through a phase characterized by optically obscured star formation at rates several hundred times that in the local Universe. Half of the starlight from this highly energetic process is absorbed and thermally re-radiated by clouds of dust at temperatures near 30 K with spectral energy distributions peaking at 100 microns in the rest frame. At 1 <= z <= 4, the peak is redshifted to wavelengths between 200 and 500 microns. The cumulative effect of these galaxies is to yield extragalactic optical and far-infrared backgrounds with approximately equal energy densities. Since the initial detection of the far-infrared background (FIRB), higher-resolution experiments have sought to decompose this integrated radiation into the contributions from individual galaxies. Here we report the results of an extragalactic survey at 250, 350 and 500 microns. Combining our results at 500 microns with those at 24 microns, we determine that all of the FIRB comes from individual galaxies, with galaxies at z >= 1.2 accounting for 70 per cent of it. As expected, at the longest wavelengths the signal is dominated by ultraluminous galaxies at z > 1.Comment: Accepted to Nature. Maps available at http://blastexperiment.info

    Invasive Species Terminology: Standardizing for Stakeholder Education

    Get PDF
    The excessive number of terms associated with invasive species, and their often incorrect usage, hinders stakeholder education about the threats of invasive species. Here we introduce seven terms (native, nonnative, introduced, established, invasive, nuisance, and range change) that are applicable across invasive taxa, understandable, typically interpreted correctly, and useful for describing most situations regarding invasive species. We also list six terms to avoid (native invasive, invasive exotic, invasive weed, alien, foreign, and nonindigenous) that create confusion via their misuse and misinterpretation. The terms we propose will increase understanding, thereby promoting behavior changes aimed at limiting the negative impacts of invasive species

    Mapping coherence in measurement via full quantum tomography of a hybrid optical detector

    Full text link
    Quantum states and measurements exhibit wave-like --- continuous, or particle-like --- discrete, character. Hybrid discrete-continuous photonic systems are key to investigating fundamental quantum phenomena, generating superpositions of macroscopic states, and form essential resources for quantum-enhanced applications, e.g. entanglement distillation and quantum computation, as well as highly efficient optical telecommunications. Realizing the full potential of these hybrid systems requires quantum-optical measurements sensitive to complementary observables such as field quadrature amplitude and photon number. However, a thorough understanding of the practical performance of an optical detector interpolating between these two regions is absent. Here, we report the implementation of full quantum detector tomography, enabling the characterization of the simultaneous wave and photon-number sensitivities of quantum-optical detectors. This yields the largest parametrization to-date in quantum tomography experiments, requiring the development of novel theoretical tools. Our results reveal the role of coherence in quantum measurements and demonstrate the tunability of hybrid quantum-optical detectors.Comment: 7 pages, 3 figure
    • 

    corecore